Ocean dispersion model simulations for ¹³⁷Cs distribution derived from the Fukushima Daiichi Nuclear Pawer Plant Accident

Daisuke Tsumune¹, Takaki Tsubono¹, Kazuhiro Misumi¹, Yutaka Tateda¹, Michio Aoyama², Yukio Masumoto³ ¹Central Research Institute of Electric Power Industry, ²Tsukuba University, ³University of Tokyo

Introduction

- Ocean dispersion model simulations were carried out in the early stages of the Fukushima Daiichi Nuclear Power Plant (1F NPP) accident.
- Interpolation of sparse observed data by the model can produce visual color contours, which are useful for understanding the phenomena.

Model inter-comparison

- 11 ocean dispersion models inter comparison were summarized(SCJ, 2014). \checkmark
- Some model can represent meso-scale eddy to reduce ¹³⁷Cs activity off Ibaraki coast, southern part of 1F NPP (Fig. 1).
- \checkmark Comparison between observation and model is difficult due to the large spatio-temporal variability and complex distribution.
- Source terms (Direct release, Atmospheric deposition) were not unified.

Long-term simulation

- long-term simulations were conducted by 2016 (Tsumune et al., 2020) and extended to September 2020(Fig. 2), with the source of direct release and river discharge of dissolved ¹³⁷Cs.
- \checkmark Annual averaged surface ¹³⁷Cs activity is in good agreement with observation(Fig. 3 and 4).
- Normalized annual averaged ¹³⁷Cs activity distributions in the regional ocean were similar for each year from 2013 to 2016(Fig. 5). This result suggests that the annual averaged distribution is predictable in case that treated water by ALPS will be discharged to the ocean from 1F NPP site.
- Impact of dissolved ¹³⁷Cs from rivers was small by 2016.

Fig. 3 Annual averaged observed and simulated surface ¹³⁷Cs activity in the near shore and off shore region in 2013

Fig. 5 Annual averaged distribution of ¹³⁷Cs activity normalized by the maximum ¹³⁷Cs activity in front of the 1F NPP site.

2016 (1/100

2014 (1/100

2014 (1/10)

2013 (1/100

2013 (1/10)

141°30'E

141°15'E

Fig. 4 Comparison between measured and simulated surface ¹³⁷Cs activity (R=0.973)

Fig.1 Surface ¹³⁷Cs activity averaged over a 10day period from April 21 to 30, 2011. Black line show general location of Kuroshio

Fig. 2 Observed and simulated surface ¹³⁷Cs activity adjacent to 1F NPP

Future perspective

- In the future, model inter-comparison using a unified source \checkmark term will be important.
- The range of direct leakage rate estimates from multiple \checkmark models has become smaller.
- \checkmark Since the distribution of atmosphere deposition (Region, Pacific Ocean) is not yet known, which needs to be estimated by atmospheric and oceanic models.
- ✓ Heavy rains in October 2019 increased the ¹³⁷Cs activity at 2F and Iwasawa coast. This indicates the possibility of releaching from estuarine sediments, which needs to be estimated by river and oceanic models.
- A combined approach of atmospheric, riverine, and oceanic models is needed to establish a unified source term

