Review of model intercomparison projects (MIPs) of atmospheric dispersion model for ¹³⁷Cs emitted from Fukushima Daiichi Nuclear Power Plant (FDNPP) ~ MIPs with identical source term and meteorological data~

<u>Yousuke Sato (Hokkaido University: yousuke.sato@sci.hokudai.ac.jp)</u>

M. Takigawa, T. T. Sekiyama, M. Kajino, H. Terada, H. Nagai, M. Kadowaki, H. Kondo, J. Uchida, D. Goto, A. Quérel, D. Quélo, A. Mathieu, S. Fang, Y. Morino, P. von Schoenberg, H. Grahn, N. Brännström, S. Hirao, H. Tsuruta, T. Nakajima and H. Yamazawa

1, What we have done, and Purpose of MIPs

What we have done ?:

Conduct two model intercomparison projects (MIPs) targeting on ¹³⁷Cs emitted from FDNPP (Sato et al., 2018, 2020) **<u>Purpose</u>**: Understand the variability of the results of the atmospheric dispersion models originated from internal element of the model (i.e., cloud physics, radionuclide physics, diffusion, and so on)

2, Strategy of MIPs, Participants and Experimental setup

Strategy: Use the same Meteorological data, Resolution, and Emission for excluding uncertainties originated from external data

<u>Participan</u>	<u>ts</u>		Experimen
Model name	Participate in	Participate in	
	Sato et al. (2020)	Sato et al. (2018)	Domain size
AIST-MM	0	0	Initial/Lateral
Pello	-	0 J	condition
HIRAT	-	s Qc c	Emission
ldX	0	0	Calculation Perio
GEARN	0	0	Horizontal grid
WRF-Chem	0	0	spacing
NHM-Chem	0	0	Observatio
WRF-CMAQ	-	0	
SCALE	0	0	Atmospheric co
Polyphemus	-	0	
WRF-Chem	0	0	Cumulativ
NICAM-Chem	0	0	

Experimental setup

	Sato et al. (2020)	Sato et al. (2018)	
Domain size	Left figure (b)	Righgt figure (a)	
Initial/Lateral condition	NHM-LETKF (<i>dx</i> =1km) (Sekiyama and Kajino 2020)	NHM-LETKF (<i>dx</i> =3km) (Sekiyama et al. 2015)	
Emission	Katata et al. (2015)		
Calculation Period	2011, Mar. 11 ~ Mar. 31	2011, Mar. 11 ~ Mar. 23	
Horizontal grid	1 km	3 km	

Calculation Domain

on data SPM (Oura et al. 2011) ncentration of ¹³⁷Cs Aircraft measurement ve deposition (MEXT, 2011)

3, Results

Aircraft measurement (a)

Total deposition (Observation and multimodel ensemble) Sato et al. (2020: dx = 1km) Sato et al. (2018: dx = 3km)

Total deposition (Each model)

Dry deposition fraction

Cumulative ¹³⁷Cs Deposition Amount Over Land During March 2011 and Ratio of Dry Deposition to Total Deposition Over Land

lodel (L/E)	Total deposition (PBq)	Area (km ²) where total deposition exceeding 10 ⁴ Bq/m ²	Dry depositior fraction (%
IST-MM (E)	3.58	4.26×10^{4}	1.7
ELLO (L)	3.07	2.52×10^{4}	79.1
IRAT-LPRM (L)	3.62	3.29×10^{4}	14.2
IX (E)	3.08	2.57×10^{4}	24.4
EARN (L)	4.03	4.09×10^{4}	23.4
/RF-Chem-J (E)	3.76	3.57×10^{4}	6.7
HM-Chem (E)	1.45	1.69×10^{4}	18.5
/RF-CMAQ (E)	1.79	2.11×10^{4}	3.6
CALE (E)	0.18	4.49×10^{3}	79.6
olyphemus (E)	2.48	2.65×10^4	61.9
		a a 4 4 4	

Advantage of multimodel ensemble (shade: model, circle: Obs.)

Geographical distribution of the concentration of atmospheric ¹³⁷Cs at 1st layer of the model a): Multimodel ensemble

Iultimodel ensemble reproduced $10 \text{ m/s} \quad 3 \text{ m/s}$

Good performance by some models cancelled bad performance of other models

Model name	RANK2 Sato et al. (2020)	RANK2 Sato et al. (2018)
AIST-MM	1.88	2.78
ldX	2.88	2.75
GEARN	2.65	2.86
WRF-Chem-J	2.93	2.98
NHM-Chem	1.64	1.90
WRF-CMAQ	1.92	2.38
SCALE	0.92	0.73
WRF-Chem-T	2.95	2.93
NICAM-Chem	2.50	2.57

	2.04	5.04 × 1
NICAM (E)	3.17	2.57 × 10
Observation (MEXT,	2.65	3.28 × 1
2011)		

(Sato et al. 2018)

(Sato et al. 2018)

6.6 9.0

Even though the same meteorological data and same emission, the deposition map and deposition fraction were different from model to model

Plume arrival time (composite for all plumes at 99 SPM sites)

Most of the models well reproduced plumes arrival time with 2~3 hours delay from measured plumes at SPM sites during March. 2011

The wind field affected by the topography was improved by using fine grid spacing, due to improvement of the topography in the model, and improve performance.

Acknowledgement: "Environment Research and Technology Development Fund (Grant number : JPMEERF20155001, JPMEERF20181002) of the Environmental Restoration and Conservation Agency of Japan" and "JSPS KAKENHI (Grant Number 17K00533, 18K11633, 19H01155)". Yousuke Sato is supported by "Research Field of Hokkaido Weather Forecast and Technology Development (endowed by Hokkaido Weather Technology Center Co. Ltd.)"