Fukushima Dai-ichi: Ten years of study and insight Session #1 What happened? 4-11 March 2011 Estimation of particulate and dissolved ¹³⁷Cs discharge from rivers to the ocean near the Fukushima Dai-ichi Nuclear Power Plant using a simple model

Kazuyuki Sakuma¹, Michio Aoyama^{2,3}, Takahiro Nakanishi¹, Hiroshi Kurikami¹, Masahiko Machida⁴, Susumu Yamada⁴, Ayako Iwata⁴ ¹Sector of Fukushima Research and Development, Japan Atomic Energy Agency (JAEA) ²Center for Research for Isotopes and Environmental Dynamics, University of Tsukuba ³Institute of Environmental Radioactivity, Fukushima University ⁴Center for Computational Science & e-Systems, Japan Atomic Energy Agency (JAEA) Primary author contact info: sakuma.kazuyuki@jaea.go.jp (K. Sakuma)

1. Introduction

- To understand ¹³⁷Cs migration from seawater and sediment to the ecosystem, predicting ¹³⁷Cs discharge from rivers to the ocean is important.
- We developed a predictive model [MERCUTY] for ¹³⁷Cs discharge from rivers to the ocean from early period after the Fukushima Dai-ichi nuclear Power Plant (FDNPP) accident to its long-term behavior.
- We simulated ¹³⁷Cs discharge from five rivers near the FDNPP using the model and compared its values with ¹³⁷Cs discharge from the FDNPP.

2. Model / Primary Information

¹³⁷Cs discharge to the ocean

- 3. Takeaway Message
- The impact on the ocean from the initial ¹³⁷Cs discharge from rivers can be limited
- However, this study indicate that ¹³⁷Cs discharge from rivers has recently been one of the sources of ¹³⁷Cs in seawater in the coastal areas
- Therefore, this model is expected to be useful to evaluate and predict ¹³⁷Cs discharge from rivers to the ocean