Fukushima Dai-ichi: Ten years of study and insight Session #1 What happened? 4-11 March 2011 Total Amount of Radiocaesium Released into the Environment by Fukushima Dai-ichi Nuclear Power Plant accident

Michio AOYAMA^{1,2}, Daisuke TSUMUNE³, and Yayoi INOMATA⁴

¹Center for Research for Isotopes and Environmental Dynamics, University of Tsukuba

²Institute of Environmental Radioactivity, Fukushima University

³ Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry ⁴Institute of Nature and Environmental Technology, Kanazawa University

Primary author contact info: michio.aoyama@ied.tsukuba.ac.jp (Michio AOYAMA)

1. Introduction

- As a result of reactor accidents at the Fukushima Dai-ichi Nuclear Power Plant (FNPP1), caused by a total loss of electric power (black out) after the Tohoku earthquake and Tsunami on 11 March 2011, large amounts of radioactive materials were released to the environment.
- The main long-lived radionuclide released from FNPP1 was radiocaesium, ¹³⁴Cs and ¹³⁷Cs of which activity rario was ca. 1, therefore the total amount of radiocaesium into the environment is one of the global concerns.
- We estimated the total amount of radiocaesium released into the environment.

2. Our results: Release amount of radiocaesium

One of the greatest results obtained by analyzing seawater samples from the North Pacific Ocean was the estimation of the total amount of ¹³⁷Cs in the North Pacific to be 15-18 PBq. This estimation has been validated by two methods described by Tsubono et al. (2016) and Inomata et al. (2016). Coastal modeling results gave the amount of ¹³⁷Cs direct discharge from the FNPP1 to coastal waters to be 3.5 ± 0.7 PBq which was the first and the most accurate result. Since the amount of direct discharge was accurately determined, the amount of ¹³⁷Cs released into the atmosphere was also properly determined by the mass balance consideration (Aoyama et al. ,2016). Results are in Fig.1. We show consensus values and comparison among past releases as Tables below.

After injected in the ocean, half of the radiocaesium remained in surface layer while second half of the radiocaesium subducted into the two mode waters (Inomata et al., 2018). On land, most of the deposited radiocaesium stayed and small amount of radiocaesium transported to the ocean (Sakuma et al., this session).

	Total atmospheric release	Atmospheric deposition on land	Atmospheric deposition on the North Pacific	Direct discharge to ocean	Total in the North Pacific	
Our results	15.2-20.4	3-6	11.7–14.8	3.5 ± 0.7	15.2–18.3	
Consensus	15-21	3-6	12-15	3-6	15-18	

Table 1 Our results and consensus values shown by Aoyama et al., 2020, JER (unit: PBq)

Table 2 A comparison among several sources of radionuclides from nuclear accidents and weapons tests. Unit:PBq

source	year	137Cs	134Cs	90Sr	3 H	133Xe	131I
Atmopsheric weapons tests (NH only)	1970	765+-79		310	240000		
Windscale	1957	0.044	0.0011	0.00022		14	0.59
Three Mile Island	1979					74-370	0.00056
Chernobyl	1986	85	47	10		6500	1760
Fukushima (to atmosphere)	2011	15-20	15-20	0.01-0.2		11000	160
Fukushima (direct to ocean)	2011	3.5+-0.7	3.5+-0.7	around 1	0.05		20

3. Conclusions: Our estimation of released amount of radiocaesium from the FNPP1 accident in 2011 satisfied mass balance in each domain and then most accurate results. Our results also consistent with several reliable estimates by other scientists who did not use mass balance consideration.