

Temporal variations and future estimations of ⁹⁰Sr and ¹³⁷Cs in atmospheric depositions after the Fukushima Daiichi Nuclear Power Plant accident with 63 years of continuous observations

Takeshi KINASE^{1,2}, Kouji ADACHI², Tsuyoshi Thomas SEKIYAMA², Mizuo KAJINO², Yuji ZAIZEN², Yasuhito IGARASHI ^{3,4}

¹Japan Agency for Marine-earth Science and Technology, ²Meteorological Research institute, ³Institute for Integrated Radiation and Nuclear Science, Kyoto University, ⁴Ibaraki University

Introduction

- We have measured the artificial radionuclides, such as ⁹⁰Sr and ¹³⁷Cs, in atmospheric depositions since 1957 in the Kanto areas around Tokyo, Japan (site A) and since 2007 at a top of the mountain in the corner of the Kanto plain (site B). As the result, we clarified the variations in ⁹⁰Sr and ¹³⁷Cs, which were emitted from atmospheric nuclear tests and nuclear power plant accidents, and their environmental processes due to their diffusion, deposition, and resuspension.
- In this study, we show our long-term observation results of ⁹⁰Sr and ¹³⁷Cs in monthly atmospheric deposition samples and estimate the current environmental processes and decay periods of ⁹⁰Sr and ¹³⁷Cs with

<u>Conclusion</u>

- Activity levels in atmospheric depositions at site A (Bq m⁻²)...
 - 90 Sr... Atmospheric nuclear test > FDNPP > Chernobyl >> Just before the FDNPP \Rightarrow latest (2018)
 - ¹³⁷Cs... FDNPP > Atmospheric nuclear test > Chernobyl > latest (2018) >> Just before the FDNPP
 - Activity levels of ⁹⁰Sr returned to the preaccident level. On the other hand, those of ¹³⁷Cs is still ~400 times higher than the preaccident levels. These values were same level as those of 1983.
 - Seasonal variations of ⁹⁰Sr at sites A and B showed the similar trend to the preaccident period.

Resuspension process...

- Site A... Mineral dusts from the neighboring surface and the remote area hosted ⁹⁰Sr and ¹³⁷Cs.
- Site B... Forest ecosystem dominated ⁹⁰Sr cycle, but the environmental process of ¹³⁷Cs cycle could not be clarified.

measurements of ¹³⁴Cs and stable elements and isotopes (Na, Mg, Al, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Sr, Ba, ⁹Be, ¹³³Cs, ²³²Th, and ²³⁸U).

Future estimation...

- The present environmental half-live of ¹³⁷Cs at sites A and B were estimated as 4.7 and 5.9 years, respectively.
- Approximately 42 and 48 years are required to reduce the atmospheric ¹³⁷Cs deposition rate from 2011.

Measuring stable elements (Na, Mg, Al, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Sr, and Ba) and isotopes (⁹Be, ¹³³Cs, ²³²Th, and ²³⁸U) by inductively coupled plasma atomic emission spectrometry (CIROS-120, Rigaku Corp.,

and Eurisys)

Japan, or Vista-PRO, Varian Inc., USA) and inductively coupled plasma mass spectrometry (Agilent7500c or Agilent8000, Agilent, Ltd., USA) Radiochemical separation 3.6% of sample Measuring ⁹⁰Sr by alpha/beta counting system (Tennelec LB5100, Mirion Technologies, USA)

Figure 1. Location of observation sites and procedures of sampling and analysis.

Figure 3. (a)Time series of ¹³⁷Cs and (b) seasonal changes of ⁹⁰Sr atmospheric deposition after the FDNPP accident. We adopted a multiple exponential function (short and long lived components) after the accident (2012–2018; the resuspension phase).

Figure 4. Correlations between radionuclides and stable elements at sites (a) A and (b) B. The units for ⁹⁰Sr and ¹³⁷Cs are mBq m⁻², and those for the stable elements are mg m⁻². The red points reveal that the correlations are significant (p<0.05) based on the correlation coefficient values, and the gray points show that the correlations are not significant (p≥0.05). Aluminum and Fe are recognized as the tracers of the **mineral dust**. (c) and (d) show the example of the electron microscopic analysis of deposition samples (site B, October 2016). Magnesium , K, and Ca coexisted with C and Cl, indicating that they were salt and organics materials and the **leaching from the leaves** contributed.

Reference: Kinase et al. Sci Rep 10, 21627 (2020). <u>https://doi.org/10.1038/s41598-020-78312-3</u>