RiO5 METHOD (6)

K. Buesseler Woods Hole Oceanographic Institution kbuesseler@whoi.edu

²³⁴**Th** — method — seawater samples ²³⁴**Th** in 4 Liter method in seawater

Disclaimer

It is the responsibility of the analyst to follow established safety and health practices. Although each laboratory identified as the source has tested the methods, each user should perform an individual validation procedure.

Table of Contents

1	SCOPE	1
_		
<u>2</u>	EQUIPMENT AND CHEMICAL REAGENTS	1
2.1	EQUIPMENT AND CONSUMABLES	1
2.2	TRACERS	1
2.3	CHEMICAL REAGENTS	1
2.4	SOLUTIONS	1
<u>3</u>	PROCEDURE	2
4	REFERENCES	2
_		
<u>5</u>	FLOW CHART	3
<u>6</u>	IMAGES	4

1 SCOPE

A method is described for the analysis of ²³⁴Th in 4 L seawater samples. ²³⁴Th is preconcentrated with MnO precipitates and filtered in 25mm QMA filters. Dried filters are measured at sea or onshore using beta counting system. Chemical recoveries are determined measuring ²³⁰Th by ICP-MS, and are usually >90%.

2 EQUIPMENT and CHEMICAL REAGENTS

2.1 Equipment and consumables

- 4 liter bottles
- Filter holders
- Aspirator pump: Cole-Parmer
- Vacuum pump
- pH meter
- 25 mm QMA filters
- Mylar
- Foil
- · Beta mounts

2.2 Tracers

- 230Th tracer: 50 dpm/g
- Eckert & Ziegler Analytics: Atlanta, Georgia USA

2.3 Chemical reagents

- Nitric Acid: Fisher Reagent grade
- Ammonium Hydroxide: Fisher Reagent grade
- KMnO₄: Fisher solid
- MnCl₂: Fisher solid
- H₂O₂: Fisher 30% solution

2.4 Solutions

- KMnO⁴: 0.45 g KMnO₄/60 mL H₂O
- Mn Cl₂: 1.2 g MnCl₂/60 mL H₂O
- Rinse Solution = $1.0 \text{N HNO}_3/\text{H}_2\text{O}_2(990 \text{ mls } 1 \text{N HNO}_3 + 10 \text{mls } 30\% \text{ H}_2\text{O}_2)$

3 PROCEDURE

- 1. Rinse container 3X with seawater, dump rinses.
- 2. Fill labeled 4 liter bottle with seawater to graduated mark on neck.
- 3. Adjust ph to ~ 1.5 with conc HNO₃ (around 7ml) and shake well.
- 4. Add 1ml of 230-Th (10 dpm/g) yield monitor and shake well. Let sit >8 hours. Bring ph to 8 + /- 0.15 using NH₄OH.
- 5. Check ph with OAKTON electronic pH meter just to dial in amount.
- 6. Add 100ul of diluted 1:20 (0.45 g/60 mL H_2O for KMnO₄) solution cap and mix.
- 7. Add 100ul of diluted 1:20 (1.2 g/60 mL H₂O for MnCl₂) solution cap and mix. Note time.
- 8. Let sample sit capped for at least 8 hours to form MnO_2 ppt.
- 9. Filter sample using 25mm QMA filter, in labeled gray pvc filter rig. Open valve as you invert bottle into rack, note start and stop time of filtering.
- 10. When sample is done close valve, remove pvc filter head and rinse using bench top filtration.
- 11. Rinse filter funnel 3X with ph 9 water.
- 12. Carefully remove filter and place in a labeled petri dish.
- 13. Dry at \sim 60 C for 2 hours.
- 14. Mount with 1 mylar and 2 foil layers, trim, label and beta count.
- 15. Rinse container, filtration rig with RS (rinse solution) and 3X with distilled H₂O.

Check Th recovery by measuring ²³⁰Th with ICP-MS. Average recovery of 230-Th from this 4-liter precipitation procedure is 92%. See method #45 *Determination of 234*Th *in Seawater samples* for specific instructions on this procedure.

4 REFERENCES

Pike, S.M., Buesseler, K.O., Andrews, J., and Savoye, N., 2005, *Quantification of* ²³⁴Th recovery in small volume sea water samples by inductively coupled plasma-mass spectrometry, Journal of Radioanalyticall and Nuclear Chemistry, Vol. 263, No. 2, pp. 355-360.

5 FLOW CHART

Unfiltered 4 liter seawater sample Acidify w/ HNO₃ Add ²³⁰Th yield Adjust pH to 8 form MnO₂ ppt Filter onto Remove filter holder 25mm QMA rinse 4 liter bottle monitor with KMnO₄ and filter wait >12 hours MnCl, wait >12 hours Beta count ²³⁴Pa Dissolve Mn off filter in Remove filter Recount for sample Remove Mn on Column Dry sample and background > 6 months later HNO₃ and H₂O₂ add ²²⁹Th yield monitor and dry Elute Th with HCl bring up in HNO₃ transfer to vial Figure 2. Analyze for ²³⁰Th/²²⁹Th by ICP-MS Flow diagram for the small volume ²³⁴Th technique: from collection through analysis.

Simplified Flow Diagram

Figure 1. Flow diagram for the small volume ²³⁴Th technique: from collection through analysis.

6 IMAGES

Picture 1. 4 liter filter head assembly.

Picture 2. Filter head assembly with vacuum manifold attached.

© Rio5 Cookbook – Method 6

Picture 3. At sea filtration set up for small volume 234 Th sampling.