RiO5 METHOD (26)

Junwen Wu Institut de Radioprotection et de Sûreté Nucléaire (IRSN) qdwjunwen@163.com

¹³⁵Cs and ¹³⁵Cs/¹³⁷Cs atom ratio— Ammonium Molybdophosphate (AMP) — soil, litter, lichen, particles

Determination of ¹³⁵Cs and ¹³⁵Cs/¹³⁷Cs atom ratio in environmental samples by combining AMP adsorption and simple-column chromatographic separation to triple-quadrupole inductively coupled plasma-mass spectrometry

Disclaimer

It is the responsibility of each analyst to follow established practices when handling and examining the samples referenced in this Rio5 Cookbook. Although the methods may have been tested by each laboratory identified as the source, each user must perform a validation procedure to ensure the validity of their results. Woods Hole Oceanographic Institution, its officers, directors and employees are not responsible for any of the data or the results that may be achieved from using the information in the Rio5 Cookbook and disclaim all liability for the same.

Table of Contents

<u>1</u>	SCOPE	1
<u>2</u>	EQUIPMENT AND CHEMICAL REAGENTS	1
2.1	EQUIPMENT AND CONSUMABLES	1
2.2	2 TRACERS	1
2.3	B CHEMICAL REAGENTS	1
2.4	Solutions	2
<u>3</u>	PROCEDURE	2
<u>4</u>	REFERENCES	2
<u>5</u>	FLOW CHART	3
<u>6</u>	IMAGES	4

1 SCOPE

The challenge of determination of ¹³⁵Cs and ¹³⁷Cs isotopes using ICP-MS, are the isobaric interferences from Ba isotopes. Because of the high Ba concentration in the environment (for example, 550 mg kg⁻¹ in soil (Yamasaki et al., 2001)), ¹³⁵Ba (abundance = 6.59%) and ¹³⁷Ba (abundance =11.2%) could cause an extremely high background signal at m/z 135 and 137, deteriorating the limit of detection for ¹³⁵Cs and ¹³⁷Cs. Furthermore, Mo in the environmental samples (ca. 2 mg kg⁻¹ in soil) could result in polyatomic interferences, ⁹⁵Mo⁴⁰Ar⁺ and ⁹⁷Mo⁴⁰Ar⁺. Minor polyatomic interferences are ¹¹⁹Sn¹⁶O⁺ and ¹²¹Sb¹⁶O⁺ (ca. 3 mg kg⁻¹ Sn and 2 mg kg⁻¹ Sb in soil) on ¹³⁵Cs and ¹³⁷Cs measurements, respectively. In addition, the high concentration of stable Cs (¹³³Cs) in environmental samples will also interfere with ¹³⁵Cs analysis, because of the peak tailing effect. Therefore, it is key to eliminate the major interferences (Ba and Mo) and minor interferences (Sb and Sn).

2 EQUIPMENT and CHEMICAL REAGENTS

2.1 Equipment and consumables

- A triple-quadrupole ICP-MS/MS device (Agilent, Model 8800).
- A MicroMist micro-uptake glass concentric nebulizer.
- A sector-field ICP-MS (SF-ICP-MS, Element 2, Thermo Fisher Scientific).
- Nitrous oxide gas (as 20% N_2O mixed with 80% He) (Sumitomo Seika Chemicals Co., Ltd., Tokyo, Japan).
- Helium and argon gases (Taiyo Nippon Sanso Corp., Tokyo, Japan).
- Anion-exchange resin (AG MP 1M, 100–200 mesh, Cl⁻ form) and cation exchange resin (AG 50WX8, 100–200 mesh, H⁺ form) (Bio-Rad).
- a 0.45-µm syringe filter (Sartorius Stedim Biotech, Goettingen, Germany)

2.2 Tracers

- Single-element standard solutions (1000 mg L⁻¹) of Ba, Cs, Sb, Mo, and Sn (Kanto Chemical Co., Inc., Tokyo, Japan).
- A standard solution of Cs (0.2 ng mL⁻¹) and Ba (1 ng mL⁻¹).
- Soil reference material (IAEA-375) (International Atomic Energy Agency, IAEA).

2.3 Chemical reagents

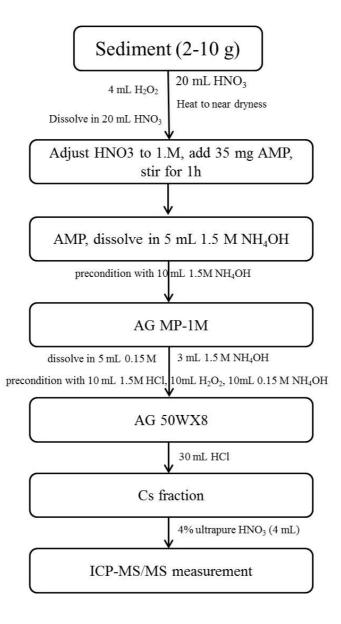
- Analytical reagent grade: nitric acid (HNO₃), hydrochloric acid (HCl), ammonium hydroxide (NH₄OH), hydrogen peroxide (H₂O₂).
- Ultrapure grade HNO₃ (Tama Chemicals, Tokyo, Japan)

- Milli-Q purified water (18.2 M Ω cm).
- Ammonium molybdophosphate (AMP) (Kishida Chemical Co., Ltd., Osaka, Japan).

2.4 Solutions

- 1.5M NH₄OH,
- 0.15 M NH₄OH
- 4% HNO₃
- 1.5 M HCl

3 PROCEDURE


- 1. Dry sample at 80 $^\circ\text{C}$ overnight and ash at 450 $^\circ\text{C}$ for 2 h.
- 2. Weigh samples (2-10 g), add 20 mL HNO₃, heat at 160 °C for over 2 h, add 4 mL H_2O_2 .
- 3. Heat to near dryness, dissolve the residual in 20 mL HNO₃, filter.
- 4. Take out 0.1 mL the filtered sample solution (analysis of stable Cs, yield monitor), adjust the rest to 1.6 M HNO_3 by adding Milli-Q water.
- 5. Add 35 mg AMP, stir for 1h and filter 0.45 um, and dissolve in 5 mL 1.5 M NH_4OH .
- 6. Load AG MP-1M column (precondition with 10 mL 1.5M NH₄OH), and then wash the column using 3 mL 1.5 M NH₄OH, evaporate to dryness, and dissolve in 5 mL 0.15 M NH₄OH.
- 7. Load the AG 50W-X8 (precondition with 10 mL 1.5M HCl, 10mL H_2O_2 , 10mL 0.15 M NH₄OH). And then wash the column using 10 mL 0.15 M NH₄OH, 10 mL water.
- 8. Elute Cs from the column with 30 mL HCl, evaporate to dryness, dissolve in 4% ultrapure HNO₃ (4 mL) and send to ICP-MS/MS analysis.

4 REFERENCES

- Yamasaki, S., Takeda, A., Nanzyo, M., Taniyama, I., Nakai, M., 2001. Background levels of trace and ultratrace elements in soils of Japan. Soil. Sci. Plant Nutr, 47, 755–765.
- Zheng, J., Bu, W.T., Tagami, K., Shikamori, Y., Nakano, K., Uchida, S., Ishii, N., 2014. Determination of ¹³⁵Cs and ¹³⁵Cs/¹³⁷Cs atomic ratio in environmental samples by combining ammonium molybdophosphate (AMP)-selective Cs adsorption and ion-exchange chromatographic separation to triple-quadrupole inductively coupled plasma–Mass Spectrometry. Anal. Chem. 86, 7103-7110.
- Zheng, J., Cao, L.G., Tagami, K., Uchida, S., 2016. Triple-Quadrupole Inductively Coupled Plasma-Mass Spectrometry with a High-Efficiency Sample Introduction System for Ultratrace determination of ¹³⁵Cs and ¹³⁷Cs in Environmental Samples at Femtogram Levels. Anal. Chem. 88, 8772-8779.
- Yang, G.S., Tazoe, H., Yamada, M., 2016. Rapid determination of ¹³⁵Cs and precise ¹³⁵Cs/¹³⁷Cs atomic ratio in environmental samples by single-column chromatography coupled to triple-quadrupole

inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 908, 177-184.

5 FLOW CHART

6 IMAGES

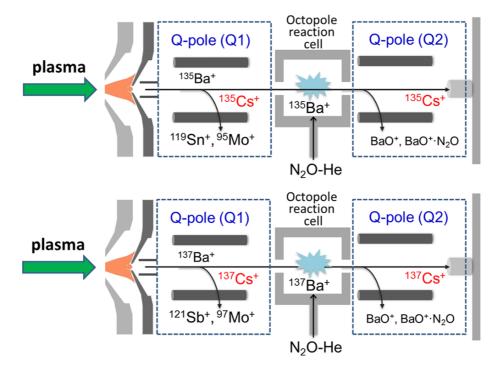


Figure 1. Schematic of ICP-MS/MS and ion-molecule reactions for 135 Cs and 137 Cs measurements. Target ions are separated from matrix ions by Q1 set at m/z 135 and 137, respectively, and they enter the collision/reaction cell, where they react with N₂O to separate Cs/Ba, eliminate MoAr⁺ polyatomic interference, and suppress the formation of SbO⁺ and SnO⁺. Finally, Q2 is set to measure the desired 135 Cs and 137 Cs (Zheng et al., 2014).

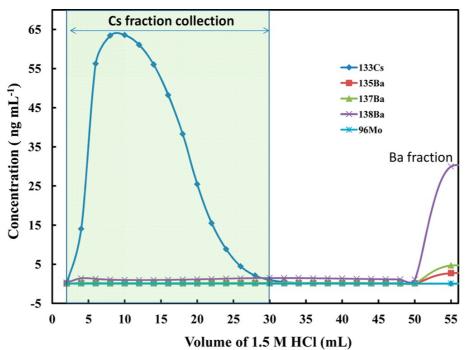


Figure 2. Elution profiles of Cs and Ba in IAEA-375 soil reference material obtained by cation-exchange chromatographic separation (AG 50WX8 resin) (Zheng et al., 2014).