RiO5 METHOD (21)

COE-XMU Min Chen College of Ocean and Earth Sciences, Xiamen University mchen@xmu.edu.cn Contributors: Renmin Jia (1012941342@qq.com)

²²⁶Ra and ²²⁸Ra—Manganese-oxide Impregnated Acrylic Fiber— Seawater sample

Seawater sample preparation for radium isotopes (²²⁶Ra, ²²⁸Ra)

Disclaimer

It is the responsibility of each analyst to follow established practices when handling and examining the samples referenced in this Rio5 Cookbook. Although the methods may have been tested by each laboratory identified as the source, each user must perform a validation procedure to ensure the validity of their results. Woods Hole Oceanographic Institution, its officers, directors and employees are not responsible for any of the data or the results that may be achieved from using the information in the Rio5 Cookbook and disclaim all liability for the same.

Insert here links to other complementary documents to this method available in the RIO web page:

Table of Contents

<u>1</u>	<u>SCOPE</u>	1
<u>2</u>	EQUIPMENT CHEMICAL REAGENTS	1
2.1	EQUIPMENT	1
2.2	TRACERS	1
2.3	CHEMICAL REAGENTS	1
2.4	Solutions	2
<u>3</u>	PROCEDURE	2
3.1	PRE-CONCENTRATION OF RADIUM ISOTOPES	2
3.2	MEASUREMENT OF ²²⁶ RA	3
3.3	SEPARATION AND PURIFICATION OF ²²⁸ RA	3
3.4	SEPARATION AND PURIFICATION OF ²²⁸ AC	3
3.5	MEASUREMENT OF ²²⁸ AC	4
3.6	CHEMICAL YIELD DETERMINATION OF ²²⁸ AC	4
<u>4</u>	REFERENCES	5
<u>5</u>	FLOW CHART	5

1 SCOPE

This method specifies the minimum requirements and laboratory methods for measuring ²²⁶Ra in seawater samples using alpha-spectrometry via its daughter ²²²Rn, and ²²⁸Ra using betacounter via its daughter ²²⁸Ac.

Samples are concentrated by MnO_2 -fibers with flow rate less than 0.5 L/min. Then the MnO_2 -fibers are sealed in valve bag and stored for the determination of ²²⁶Ra. After the analysis of ²²⁶Ra, Ra isotopes on MnO_2 -fibers are eluted by 2 M HCl solution and co-precipitated for the determination of ²²⁸Ra.

2 EQUIPMENT CHEMICAL REAGENTS

2.1 Equipment

• MnO₂-fiber

Add ~50 g acrylic fibre and 30 mL concentrated sulfuric acid in 3 L 0.5 M KMnO₄ solution, heat to boiling and keep 1-2 h. During the boiling period, stir to keep a sufficient contact of fibre with KMnO₄. After the reaction, the fibre should be totally atropurpureus. Cool down and wash it with ultrapure water till the leaner is colourless (almost 10 times). After washing, the loose MnO_2 particle on fibre is removed. The colour of MnO_2 -fiber should be dark.

2.2 Tracers

• Standard tracer: ^{232}Th standard solution, 31.48 ±0.62 dpm/g activity. Used for the determination of recovery.

2.3 Chemical reagents

The crystal water of chemical reagents are not shown in the chemical formula

- Hydrochloric acid, HCl, analytically pure
- Nitric acid, HNO₃, analytically pure
- Sulfuric acid, H₂SO₄, analytically pure
- Acetic acid, CH₃COOH, analytically pure
- Chloroacetic acid, CH₂ClCOOH, analytically pure
- Barium nitrate, Ba(NO₃)₂, analytically pure
- Lead nitrate, Pb(NO₃)₂, analytically pure
- Sodium sulfate, Na₂SO₄, analytically pure
- Cerium chloride, CeCl₃, analytically pure
- Sodium acetate, CH₃COONa, analytically pure
- Ammonium oxalate, (NH₄)₂C₂O₄, analytically pure

- Hydroxylamine hydrochloride, HONH₃Cl, analytically pure
- Sodium hydroxide, NaOH, analytically pure
- EDTA-2Na, $C_{10}H_{14}N_2Na_2O_8$, analytically pure
- DTPA, C₁₄H₂₃N₃O₁₀, analytically pure
- D2EHPA (P₂₀₄), C₁₆H₃₅O₄P, analytically pure
- n-Heptane, C₇H₁₆, analytically pure
- Ammonium citrate dibasic, C₆H₁₄N₂O₇, analytically pure

2.4 Solutions

The solutions below are made with Milli-Q water matrix if not special mentioned

- HCl solution, 2 M/L
- HONH₃Cl saturated solution in indoor temperature
- Ba(NO₃)₂ solution, 12 mg Ba/mL
- Pb(NO₃)₂ solution, 80 mg Pb/mL
- 1:1 H₂SO₄ solution
- EDTA-2Na solution, 150 g EDTA-2Na with 45g NaOH in 1000 mL
- DTPA solution, 134 g DTPA with 64 g NaOH in 1000 mL
- Na₂SO₄ solution, 200 g Na₂SO₄ in 1000 mL
- 36% CH₃COOH solution
- CH₂ClCOOH solution, 2 M /L
- P₂₀₄ solution, 150 mL P₂₀₄ with 850 mL n-Heptane, washed by the mix solution of 2 M /L ammonium citrate dibasic solution and 0.90 g/mL ammonium hydroxide (volume 1:1) twice, 200 mL each time, and then washed by 4 M /L HNO₃ twice, 200 mL each time, finally washed by 200 mL Milli-Q water.
- Mix solution for actinium cleaning, 100 g CH₂ClCOOH, 10 g DTPA and 33 g NaOH in 1000 mL (pH should be 3.0)
- CH₃COONa solution, 300 g CH₃COONa in 1000 mL
- $(NH_4)_2C_2O_4$ solution, 28.4 g $(NH_4)_2C_2O_4$ ·H₂O in 1000 mL
- CeCl₃ solution, 5 mg Ce/mL

3 PROCEDURE

3.1 Pre-concentration of radium isotopes

120 L seawater flows through a column (3×20 cm) packed with ~12 g manganese-oxide impregnated acrylic fiber (i.e. MnO_2 -fiber), the flow rate is less than 0.5 L/min to assure quantitative adsorption of Ra on fiber.

3.2 Measurement of ²²⁶Ra

²²⁶Ra activity is measured by its daughter ²²²Rn emanation method.

- 1. MnO₂-fiber is taken out from the column, and the residual water is removed.
- 2. The fiber is filled into a diffusion tube, sealed and vacuumized.
- 3. After 5-7 days, ²²²Rn reaches a high level; a vacuumed scintillation counting cell was sequentially connected to the diffusion tube.
- ²²²Rn is emanated from MnO₂-fiber in the ZnS counting cell, and the cell is sealed for 3 hours, ²²²Rn will be equilibrium with its daughters.
- 5. Activity of ²²²Rn is measured by an Rn-Th analyzer.

3.3 Separation and purification of ²²⁸Ra

- After measurement of ²²⁶Ra, MnO₂-fiber containing Ra isotopes is unwound and heated in 300 mL 2 M HCl plus 2 mL concentrated NH₂OH·HCl solution until the color of the fiber turned whitish, and collect the solution.
- 2. Repeating the above step and combining the solution.
- Adding 1 mL Ba(NO3)₂ (12 mg Ba²⁺/mL) and 5 mL Pb(NO3)₂ (80 mg Pb²⁺/mL) carriers with stirring.
- 4. Adding 15 mL 9 M H₂SO₄ with stirring to form Ba(Pb)SO₄ precipitate, and leave for more than 12 hours.
- 5. Siphoning the overlying solution and leave the bottom precipitate.
- 6. Centrifuging the precipitate at 2500 r/min for 2 min and decanting the solution.
- 7. Adding Milli-Q water to wash the precipitate, and separating it again by centrifugation.
- 8. Adding 8 mL EDTA and 10-15 mL Milli-Q water, then warm the solution to dissolve the precipitate.
- Adding 9 M H₂SO₄ drop by drop to reach the pH value of 3.0-3.5, and BaSO₄ precipitates. Recording the time of ²²⁸Ac production.
- 10. The precipitate is heated at 100°C for 5 min to form large-size particles, and then separate the precipitate by centrifugation (2500 r/min for 2 min).
- 11. Washing the precipitate using Milli-Q water again, and separate the purified precipitate.

3.4 Separation and purification of ²²⁸Ac

 Adding 10 mL DTPA to the purified BaSO₄ precipitate and heated at 100°C to dissolve the precipitate, and then leave it for more than 48 hours to let ²²⁸Ac reach an equilibrium status with ²²⁸Ra.

- Adding Milli-Q water to a volume of 30 mL, and then add 1 mL Na₂SO₄ (20%) and 2.2 mL HAc (36%), recording the time of BaSO₄ formation, i.e. the time of separation of ²²⁸Ac from ²²⁸Ra. Separating the precipitate by centrifugation.
- Adding 10 mL P₂₀₄ solution and 10 mL actinium-washing solution into a separating funnel (75 mL), shocking for 2 min to clean P₂₀₄ solution, and then discard the actinium-washing solution.
- 4. Putting the solution containing ²²⁸Ac after the separation of ²²⁸Ac from ²²⁸Ra into the prepared separating funnel.
- 5. Using 10 mL Milli-Q water to wash the BaSO₄ precipitate and transfer the water into the above separating funnel.
- Adding 5 mL monochloroacetic acid (2 M) to the separating funnel and shocking for 2 min, and then putting the water solution (i.e. the lower solution) into the other prepared separating funnel with 5 mL cleaned P₂₀₄ solution.
- 7. Shocking the second separating funnel for 2 min, and then discard the water solution, combining the organic phase (i.e. P₂₀₄ solution) with that in the first separating funnel.
- 8. Adding 10 mL actinium-washing solution into the separating funnel, shocking for 2 min, and discard the water phase (i.e. actinium-washing solution).
- 9. Adding 10 mL HNO₃ (3 M) into the separating funnel, shocking for 2 min, and collecting the HNO₃ phase into a 50 mL beaker.
- 10. Using 5 mL HNO₃ (3 M) to extract 228 Ac resided in P₂₀₄ solution again, and combining the HNO₃ phase with the first collected HNO₃.
- 11. Adding 6 mL NaAc (30%) and 1 mL Ce(NO₃)₃ (5 mg/mL) to the HNO₃ solution, warm the solution, and then drop by drop add 5 mL (NH4)₂C₂O₄ to form Ce₂(C₂O₄)₃ precipitate, quickly cool the solution down in ice-water.
- 12. Filtering the precipitate onto a piece of ashless filter with very slow flow velocity (i.e. drop by drop), and wash the precipitate with a little Milli-Q water.
- 13. Drying the filter and precipitate using an infrared lamp, and store it for measuring.

3.5 Measurement of ²²⁸Ac

²²⁸Ac is counted using the low-background beta-counter.

3.6 Chemical yield determination of ²²⁸Ac

Using the same protocols of separation and purification of ²²⁸Ra and ²²⁸Ac to measure the activity of calibrated ²²⁸Ra sample, and calculate the chemical recovery according to originally added ²²⁸Ra and recovered ²²⁸Ra.

4 REFERENCES

Xie, Y., Huang, Y., Shi, W., Qiu, Y. (1994). Simultaneous concentration and determination of 226Ra, 228Ra in natural waters. *Journal of Xiamen University*, 33(sup.), 86-90.(in Chinese)

5 FLOW CHART

Flow chart of sampling.

Flow chart of ²²⁶Ra measurement

Flow chart of ²²⁸Ra measurement.

